
From Phones to 
High End PCs: How 

to Scale

How to develop & scale your game technology across vastly different platforms.

The notes under the slides may or might not contain the information I actually managed to 
say during the talk ;)



/me

•Aras Pranckevičius

•Rendering dude at Unity

•@aras_p

I’m graphics architect and resident troublemaker at Unity Technologies. Also on Twitter.



I don’t know!

So the frank answer to the question - how to scale across vastly different platforms - is that I 
don’t know! At Unity, all I’ve seen is how we grew it from one weird platform (it was Mac only 
at the time) to a dozen or so platforms, while sharing a lot of code and technology. And I’ve 
seen what things we or our customers have to do to scale their games across several different 
platforms, or within one varying platform (like a PC).

So that’s what I’m going to talk about, but keep in mind that everything beyond this point 
might be false and/or stupid.



Overview

•Many platforms

•Design challenges

•Technical side

•Scaling the content

So the overview of the talk is:
The existence of & need for targeting multiple platforms.
Design challenges while doing that.
Technical side, mostly how to develop cross platform technology.
And finally, the part with some pictures, is how to scale actual game content once you have 
said cross platform technology.



Many platforms!

•More diverse platforms

•Mobile, consoles, PCs, web

• Someday... microwaves?

•Often have to target >1 platform

Now, many platforms. This shouldn’t be a surprise to anyone. It looks like the world is not 
moving towards a single platform; what happens is that there are more and more diverse 
platforms.

The platforms are wildly different, and big groups probably could be mobiles, consoles, PCs... 
perhaps web is a platform on it’s own. There are many more, for example set top boxes, 
gambling machines, internet TVs and so on. If we’d believe all the “gamification” buzz, 
someday the microwaves and the toilet seats will have games on them.

It’s very nice to exclusively target one platform, but quite often a developer can’t afford that 
due to limited market size. Even within a single “platform group” like mobile, you probably 
want to target at least iOS and Android. Which is way more than a single hardware 
configuration!



This talk:

•Smartphones, tablets

•Desktops, consoles

•Web (Unity, Flash, HTML5/WebGL)

In this talk I’ll only be touching several platforms, namely smartphones & tablets (of iOS and 
Android variety), desktops and consoles, and web.

By web, I mean something that could do 3D games, using Unity, upcoming Flash 11, or 
HTML5/WebGL. I’ll skip on Adobe Director here, because at least from here it seems to be 
pretty much dead.



This talk:

•Won’t cover some others

There are various other platforms that I just won’t cover in this talk. I can’t cover everything; 
also, not everything is supported by Unity so I wouldn’t know what to actually say there.



Challenges

Now, challenges in targeting multiple platforms.



Game Design

• Input schemes

•Attention span / play lengths

•Player skill sets

•Monetization / pricing

•Distribution / marketing

One immediate challenge mostly lies in how to design a game for different platforms. A lot of 
stuff is different here! Some of the obvious differences could be:

Vastly different input schemes; touch vs. controller vs. mouse.
Typical game session lengths; on a console you can expect the player to spend 2 hours in 
one go; good luck with that on a phone.
Somewhat related; different platforms have different player skills. Something like mobile or 
web typically has much fewer players who know everything you’re supposed to know in a 
modern shooter game. And vice versa, a console player might not be highly trained in 
estimating trajectories of bird launches.
And the list goes on; even the business side of different platforms is very different.



Game Design

•All very different between platforms!

•BIG CHALLENGE

And all this is a big, big challenge!



Why bother

•Which game is the same across 
different platforms?

•Need to adjust to the platform

It’s such a big challenge in how to design a single game across vastly different platforms, 
that I don’t even know if anyone should bother.

I mean, I haven’t seen a single good game that is the same across mobile, consoles and web, 
for example. There are games that share the same universe or story; or share same art 
assets, but successful games have their design tailored to the platform.



However

•Can share skills the team has 
learned

•Can share tech. between several 
games

At Unity, what we very often see is that people pick a small set of target platforms for a single 
game. For example, “web” or “mobile”. They love that a lot of stuff they learned in Unity is 
easily transferable between platforms, and that they can easily reuse art assets and code 
between platforms, but very often a single game targets relatively small set of platforms.

So even if your current game is for one or two platforms only, you might want to make the 
next one for different platforms. And a lot of code, tools and workflows can actually be 
shared.



Technical Side

So let’s get to the technical side, how to develop multiplatform technology



Easy

•Did I say it already?

•Relatively easy part

It’s actually not very hard ;)



Codebase

•~95% code shared

•Most support C/C++, asm

•Web trickier!

•WP7 .NET only, makes us ignore it

At Unity, absolute majority of our codebase is cross platform. This isn’t hard since all (or 
actually, most) platforms we care about support C and C++ and some form of assembly 
code. So just write most of your code in cross platform way and you’re done.

Now, web is trickier because there’s no widespread way of writing native code to the web. 
However web is a large & important platform, so I’ll talk about it in a second.

Some other platforms, like Windows Phone 7, support only .NET code. All this decision 
achieves is that it makes us ignore the platform. If any platform holders read this: seriously, 
native code access or GTFO. You are already starting with really, really strong competition in 
the field. How do you plan to compete with Apple when they do allow native code and you 
don’t?!



Targeting Web

•Most flexible: your own plugin

•Also, most pain

• Installing it, support, backwards 
compatibility

So, targeting the web. Most flexible way is writing your own browser plugin. A plugin can do 
pretty much anything it wants; it’s piece of native code running in the browser, with very little 
sandboxing done. So technically, saying “console quality graphics in the browser!” when it’s 
done via a plugin is nothing fancy. It’s not much different to a standalone game running on 
the same machine, except it happens to draw pixels inside the browser’s window.

However, writing your own plugin is a nightmare. Both due to technical reasons - suddenly 
you have all these slightly different browsers to support, and getting your plugin to be 
widespread will be a huge challenge. Also, you will have to maintain backwards compatibility 
pretty much forever. Want to fix a bug and release a new version of your plugin? Guess what, 
some weird game might be there that depends on the bug being present. It’s a lot of 
headache.

And on plugin penetration side, you’ll always have “but Flash is more popular” or “it’s not a 
standard”. Actually, you will get both. We get over 3 million of new plugin installs each month 
and pretty good installation rates (meaning quite a lot of players that go to your game will 
end up already having or installing the plugin), but it’s still very, very long call from Flash.



Targeting Web
•Cross compilation?

•C/C++ -> AS3/JS/CIL

•Alchemy, Emscripten, Mandreel, 
custom LLVM backend, ...

•Lower performance than native

•Multicore, SIMD hard or impossible

So another option of how to target the web could be cross compilation. It sounds totally nuts, 
but there are technologies that can take almost arbitrary C++ and spit out ActionScript or 
JavaScript or .NET on the other side. So with that you could target Flash or HTML5 or WP7 for 
example.

Any platform specific APIs, like D3D, obviously can’t be translated into ActionScript. So you’d 
have to somehow call into Flash APIs from your cross compiled code. But it is certainly 
doable.

Of course this way the code would not run at the original speed. It could run maybe 2 to 10 
times slower, which is not awesome but might be good enough.

Some things would currently be impossible, for example good multicore utilization or SIMD. 
Maybe someday Flash or HTML will have ways of using that.



Targeting Web

•Google Native Client

•Chrome only

•C/C++, GLES2.0, audio buffer, 
input, ...

A way of targeting web that I’d really like to be widespread is Google’s Native Client 
technology. Basically it’s a way, with special compiler and some runtime support, to prove 
that the code will not do anything that might be a security risk. Turns out it is possible to do 
this, with only a small cost in performance.

Native Client right now is Chrome only, and not enabled by default in the current stable 
version of Chrome.

But it has APIs to do OpenGL ES 2.0 rendering, mixing into an audio buffer, processing input 
events, loading files from the internet and so on. Pretty much everything that you need to 
make a game actually.



Most of code...

•Relatively high level

•Cross platform!

So, back to cross platform code. Majority of lines of code is relatively high level, cross 
platform code. Ta-da!



...plat specific code
•Rendering interface

•Audio buffer

• Input

• I/O

•SIMD Math

• ...

There are parts that are necessarily platform specific, like actual rendering, audio, input, I/O 
APIs and so on. However, these are quite small pieces of code, well maybe except rendering.



Similar: Render

•Shader based

• Fixed function in old PCs, GLES1.1

• GPU Compute: not yet, will come

•Shaders, geometry, textures, render 
targets, device state

But even when the APIs you need to call are different; the “design” of the platform specific 
systems is often quite similar.

For example, rendering. These days, if you ignore low end platforms and don’t want to push 
high end platforms to the limit, you can design a renderer around DX9/OpenGL ES 2.0 
functionality. Which would be shaders, geometry buffers, texture data, render targets and 
device state.

Going for low end platforms you’d have to add fixed function vertex and pixel processing, 
and make a lot of fancy stuff optional. Going for high end platforms, you’d have to somehow 
incorporate GPU compute, tessellation, more flexible resource views and so on. So that would 
actually complicate cross platform renderer design.



Similar: Multicore

•Multicore on all platforms we care

•Except Web without plugins

•Still need 1 core path for mobile

•PS3... somewhat different to others!

Likewise, multicore CPUs. These days everything is multicore. Except, well, Web, unless you 
write your own plugin. You still need to maintain an efficient single core path for mobiles and 
the Wii.

Now of course PS3 is somewhat different, but as long as your build up your stuff in “job” 
style, it’s not totally different. If you go for other high end platforms, you might want to do 
some GPU compute stuff in a similar fashion, or maybe not. I don’t really know much there ;)



Similar: SIMD

•Good support on many platforms

• NEON, VMX, SSE

•Except Web without plugins...

•Still need scalar for mobile

Things like SIMD are again quite similar between platforms. Mobiles have NEON which is 
awesome, consoles have VMX which is good, and PCs have SSE which, well, it does SIMD as 
well.

Like usual, Web without plugins is different. And you still need to have a “fallback” scalar 
implementation for mobile because...



Well because even some relatively new ARMv7 platforms do not have NEON support. And 
there are quite a lot of older ARMv6 platforms which do not really have any real SIMD 
support.



Similar: Audio

• Just final audio buffer

•Do mixing yourself

• We use FMOD

All platforms you care about can provide an audio output buffer for you, where you can write 
final mixed sound data. So just do the mixing yourself and call it a day. We use FMOD which 
does support all platforms we care about, and has some platform optimized mixing routines.



What we do

•No fancy abstractions

• Interface in common .h file

•Link to needed .cpp file

•Folder of stuff per platform

How we actually write platform specific parts of Unity:

We do not do fancy abstractions with platform implementation factories, virtual interfaces 
and whatnot. A simplest approach is to have the common interface in a header file - which 
can be just a bunch of global functions - and implement them for each platform. Link the 
needed implementation into final executable.

We throw all platform specific stuff into one folder per platform, except the low level graphics 
interface.



Like this. So you have a bunch of folders for each platform; and inside some folder you have 
bunch of files implementing one or another piece of functionality.



What we do

•Rendering (GfxDevice)

•Largest platform specific piece

•Some shared between platforms

• E.g. OpenGL ES 2.0

The low level rendering part, we do it a bit differently. Mostly because it is quite large pieces 
of code, and they are more tied into the actual rendering API than to a specific platform. 
OpenGL ES 2.0 is pretty much the same in iOS, Android and Native Client for example, and we 
have one implementation for all of them.



But again, it’s just some folders and files... easy ;)



GfxDevice size
•Source code size:

•OpenGL ES 2.0: 240 KB

•OpenGL ES 1.1: 120 KB

•Xbox 360: 120 KB

•Direct3D 9: 300 KB (!)

• Lots of code for pre-DX9 HW

However it’s quite a lot of code. For example, here the current C++ source code size of our 
implementations. Surprisingly enough, D3D9 is the largest, but that’s because it covers the 
widest hardware capability range, from essentially DX6 stuff to DX9 with fancy extensions. If 
you can not support pre-DX9 hardware, I’d advise you to do that, a lot of blood and tears will 
be saved.



Testing / Support

I said that developing for multiple platforms is easy, and it indeed is. However, testing and 
properly supporting them is not that easy.



More hassle

•For developers

•Different compilers / env

•Can accidentally break others

•Get everyone at least 2-3 platforms

• Win, Mac, iOS/Android

For the developers, it’s slightly more hassle. Different platforms have different compilers and 
environment, and you can accidentally break other builds. What we do is get all developers at 
least 2 platforms, for example everyone gets a PC and a Mac; while many developers also 
have iOS or Android device set up for development. In the ideal world everyone would also 
have one or two console devkits, but getting those is a hassle on it’s own.



CI

•Continuous Integration helps a lot!

•Here, TeamCity with 40 build/test 
machines

What really helps of course is having a Continuous Integration setup. As soon as someone 
pushes a commit, a build farm notices it and builds everything it can with the change. So you 
get notified when you break a build on another platform quite soon, with full compiler log 
output.

A Continuous Integration farm also then runs various test suites on various platforms, which 
help to catch errors of a kind of “it compiled just fine, but crashed or did something wrong”.

At Unity we use TeamCity with something like 40 build/test machines. TeamCity is not 
perfect, but way better than everything else we tried, especially at complex build setups.



Here’s a screenshot of which machines are building what on TeamCity, with everything being 
too small to actually see.



Device Zoo

•Consoles are easy!

•PCs more of a problem...

•Mobile quickly becoming the worst

Now, testing the different platforms is quite hard. Consoles are easiest in comparison, 
because it’s pretty much that any Xbox 360 is the same as any other, more or less. PCs, well 
not so much, they are very different. And mobile platforms are quickly becoming the worst 
for testing, with new funky kinds of (Android) devices appearing each week.



A small zoo

So for PCs, you have a small test zoo with different GPUs, installed OS versions and whatnot. 
It’s easy to setup multiple OSes on a single machine, and relatively easy to swap different 
discrete GPUs. To test integrated GPUs you will pretty much have to buy a machine per GPU.



A real zoo!

These two photos from Martin Shultz of DecaneSmall part of Unity’s zoo

On phones and tablets, you will pretty much have to buy each hardware configuration you 
care about, multiplied by the number of OS versions you care about.

Some of those devices are more painful to automatically test on, for example on iOS you can 
only transfer test results via wireless connection. If there’s a wireless glitch on your test farm, 
you’ll get failing builds.



The Scaling Part

Now finally, onto the “how to actually scale” part



Vast differences!

•Computing power

Most obviously, there are huge differences in computing power of different devices. Even 
within same platform, a lot of variation.



PCs:

•1 to dozens CPUS

•128 MB to 16 GB RAM

•1 to 200 GB/s VRAM BW

•0.3 to 30 Gpix/s pixel fill

•100X difference!

For example, on PCs. People have wildly different configurations.

Source: Unity’s hardware stats http://unity3d.com/webplayer/hardware-stats

So that’s 100 times performance difference within a single platform. It’s really hard, or 
probably impossible, to cover all that with a single game, while providing “ok” experience.



Majority, however:

•1 to 4 CPUs

•1 to 4 GB RAM

•3 to 12 GB/s VRAM BW

•0.5 to 6 Gpix/s pixel fill

•10X difference

However, if we ignore outliers of the usual distribution curve, say lowest 5% and highest 5% 
of the market, the differences become much smaller.

Something like 10 times the performance difference. Which is still a lot, but not “impossible” 
to cover.



Mobile:

•Some problematic

•High res screens, weak GPU

• iPhone 4, iPad 1 etc.

•Too many pixels to paint!

•Same problem on low end PC GPUs

Mobile platforms have similar variation these days. One particularly weak area in many of 
them is high resolution screens coupled with a “meh” GPU. It’s often just fine for 2D games, 
but gets really challenging once you go 3D; any actual overdraw, transparencies or more 
complex shaders is death.



Scaling 10X

•Not very hard

•Look / run okay on baseline

•Up: add optional stuff

•Down: remove non critical stuff

So, scaling to cover 10 times performance variation. To me, it seems like a sensible approach 
is deciding on a baseline configuration, and making sure the game looks and plays well on 
that.

And then you add optional stuff that’s essentially more eye candy to cover more powerful 
platforms -- which is scaling up from the baseline.

If you need it, you can also try targeting lower than the baseline, by removing some of non 
critical stuff.



Scaling up

•Mostly easier IMHO

•Won’t push high-end to the limit

•For actual games, not future-fancy 
tech demos!

•Sad: uses all extra power for eye 
candy

Scaling up is somewhat easier I think, and you’ll end up with a game that looks & feels good 
on all configurations you care about.

It will not, however, push the high end configurations to the limit, unless you invest 
extraordinary amount of effort. Which is fine for actual games, but not for some tech-demos 
that would be supposed to show how the future might look on hypothetical devices.

It’s a bit sad to use all this extra power on eye-candy features only. You could try to 
somehow make a game better with some extra computing power, but this again goes into 
game design challenges. Having more enemies, or more complex gameplay physics, or 
smarter AI actually changes the game, so you’d end up with slightly different games 
depending on the power available. Which may or may not be fine.



Example

•Will be using Shadowgun by 
Madfinger Games

•Planned for Sept 2011

•Smartphones & tablets

Now, a quick example of one Unity game; Shadowgun by Madfinger Games. The game could 
be summarized as Gears of War type of shooter for mobiles. It’s still in development, planned 
to launch quite soon. Madfinger got some advice & bits of technology from us, but a lot of 
stuff they came up with themselves.



If environment with 
a texture & lightmap 
does not look good: 

nothing else will 
help!

This should be the baseline mantra.

If environment with just a texture & a lightmap does not look good, then nothing else will 
help.

Which means, a game has to look good even with super simple technology. You can always 
add more fancy stuff on top of this base, but the base has to already be good. If the 
underlying artwork is crap; or lights are not placed in a meaningful way; or level design is 
boring, then no amount of shaders, post processing or anti-aliasing will make it shine.



The environment here is pretty much a texture multiplied by a lightmap.



Baseline

•30 FPS on iPad 1 / Tegra 2

•At 1024x768, iPad 1 one of weaker 
configs in pixel processing on 
mobile

•Similar for Tegra 2, Android tablets 
generally higher res

So, the baseline of Shadowgun is running 30 FPS on iPad1 and Tegra2.

Now, iPad1 is really weak on pixel processing power, so it’s not exactly easy to achieve 30 
with a complex looking 3D game.

Same applies to Tegra 2, especially since Android tablets tend to have even higher 
resolutions.



Can’t afford much

•GPU limited on pixels

•Make tech really simple

•Use good artwork instead!

•Bake all you can

So the recipe how to achieve the baseline is to make everything as simple as possible. It was 
discovered from the start that the pixels are going to be the bottleneck, so make them be 
simple.

Use good artwork instead!

And bake everything you can offline, so the pixels appear to be complex when in fact they 
aren’t.



Move all fancy stuff 
you can offline!

This could be another mantra:

Move everything you can into offline tools.

Precompute, bake, compute platform optimized data, whatever. This is somewhat more 
annoying for you as a game developer, but all the time you have spent baking stuff is 
something that does not have to be computed multiple times per second by millions of 
players.



Environment

•Texture, lightmap

•Complex materials baked into a 
texture

•Fake per vertex specular

Shadowgun’s environment objects are basically a texture and a lightmap. They are authored 
as more complex objects, with multiple texture layers, normal maps and whatnot, but all the 
material complexity is “baked” into a single texture. This is not correct since some light 
directions have to be approximated at baking time, but oh well.

Specular is faked, it always comes from a direction somewhere close to the camera. 
Computed per vertex.



You just get a complex looking texture in the end, and 99% of the players won’t be able to 
tell it’s not actually bumpmapped at runtime.

This material baking tool for Unity is released publicly by the way: http://
www.unifycommunity.com/wiki/index.php?title=Bake_Material_to_Texture



Characters

•Custom BRDF via (N.L*0.5+0.5,N.H) 
lookup texture

• iPad1, faster than single highp pow()!

•Normal maps

•Per vertex SH lighting

• Light probes, muzzle flash, explosions

Characters in Shadowgun actually use normal maps. Shading is done with a trick from 2001 
era, which is encoding lighting response into a small lookup texture. Turns out doing this is 
much faster than even a standard Blinn-Phong, and allows more complex BRDFs to be put 
into the lookup texture.

There are spherical harmonics light probes baked around the level, and lighting from them is 
applied per vertex. Additional realtime lights, like muzzle flashes or explosions, are also fed 
into the spherical harmonics data, so it’s no extra cost on the GPU at all.



So again, some nice editor tools for artists to tweak the character lighting and bake the final 
texture. At runtime, it’s just one dependent texture read in the shader.



Fx

•No postprocessing, no fog

•Fog planes, light shaft, glow card 
geometry

•Scale down (move along normals) in 
vertex shader when close: dramatic 
fill savings!

Effects wise, everything is really simple. There’s no image postprocessing going on, at all. No 
fog either.

Where these things are needed, they are emulated by manually placed fog planes, light 
shafts, glow cards and so on. More work for artists, but less work for underpowered GPUs. 
Well actually, their artists like this because it enables them to have more control than for 
example postprocessing.

Again, one simple trick that dramatically saves fillrate: when you get close to a fog plane or a 
glow card, fade it out and scale it down in the vertex shader, so that it does not cover 
majority of the screen. Shadowgun moves vertices along the normal; artists edit normals so 
this scaling down happens exactly how they want it.



Fx
•Liquids, caustics: two distorting 

textures

Places that have effects like caustics and liquids: just some extra shader that combines two 
moving textures. All is fake!



Fx
•Vent shafts/shadows: rotating 

bright/dark geometry

Vent shafts and shadows: that’s just some bright and dark geometry with alpha blending. 
Rotate it, and the press goes “spectacular lighting effects” ;)



Scaling up target
• iPad 2, still 1024x768

•4-8X faster GPU

•2x CPU cores

•2x more RAM

•One of best configs in current 
mobile

Ok, so all that runs 30 FPS on iPad1. The current target to scale up to is iPad2.

Same resolution, but massively more powerful GPU. Not ten times, but hey ;)



Scaling up target

•Tegra 3 (Kal-El)

•Not out yet; can’t publicly talk 
specs ;)

•But expect it to be strong!

Another scaling up target, upcoming Tegra 3 chip. Likewise, a good step up from Tegra 2.



Scaling up

•Target 60 FPS on iPad2/Tegra3

•Anisotropic filtering

•More fx (particles, cloth, shadows, 
parallax)

•MSAA

Currently scaling up in Shadowgun adds easy eye candy.

Run at 60 FPS, use anisotropic filtering on a lot of surfaces, use more eye candy effects 
(particles, cloth, shadows, parallax shaders), maybe some anti-aliasing.



Scaling up

•Quickly becomes GPU bound again 
at 60 FPS

•Open question what to do with 
spare CPUs?

• Not even fully using 1 core of iPad2!

That is enough to make it GPU bound again.

However, most of that made it more expensive on the GPU, but almost same cost on CPU. 
How to scale up there?

I really don’t know. It could try having smarter AI or better physics or whatnot, but all that 
again is not pure eye candy as it changes the game.



Tiny Wish Here

•Offloading GPU work back to CPU 
not easy on mobiles...

•People do it all the time on PS3...

•Want to do the same on mobile!

A little step aside, there’s a big need for be able to juggle tasks around between CPU and GPU 
depending on which one is overloaded in the game. If we want to keep the game the same as 
the baseline, there’s not much stuff we can do with extra CPU power on a more powerful 
configuration!

On consoles that’s a bit easier because of lower level access to the hardware, but on mobiles 
this is hard. Someone should solve it one way or another.



Scaling up to PC?

•Shadowgun not targeted at PCs...

• ...but let’s do some guesswork

Now, what are the ways Shadowgun could be scaled up even more, for example to PC 
performance levels?

Note that this game is not targeting PCs, so I’m just doing wild guesses here.



Up to PC, GPU
•Higher resolution

•Postprocessing!

• Color correction, DOF, motion blur, 
SSAO, MLAA

•Blobs -> actual shadowmaps

•Aniso + trilinear filtering

•More particles / fx

On the GPU it’s relatively easy to burn performance on eye candy.

PCs tend to have high resolutions, boom, 2 to 5 times more pixel work.

Image postprocessing can burn a lot of power. And I mean, really a lot!

Fake blob shadows could be replaced with actual shadowmaps.

And so on.



Up to PC, GPU

•Could go linear space HDR lighting 
+ tonemapping

•Would probably need texture/
lighting tweaks to be good

I guess it could also do proper linear space lighting at high dynamic range, followed by 
tonemapping.

However, this might be not trivial to apply, because changing to linear space does change a 
look of the game a lot. Level lighting could need retweaking, perhaps even some textures 
would have to be repainted.

So not trivial to do.



Up to PC, CPU
•More light probes

•More debris

•Effect physics (cloth, water, ...)

•Software occlusion culling

• ...other changes would need 
gameplay tweaks?

On the CPU side there are several eye candy things it could do:

More light probes, more debris, more effect only physics like cloth and water interactions.

Again, putting more meaningful load on the CPU is hard without affecting the gameplay.



Scaling down?

•Kind of last resort

•When baseline “looks/runs good” 
still too expensive

So that’s with scaling up. As a kind of last resort measure, you could also try scaling the 
game down from your baseline.



Scaling down

•Drop texture mip levels

•Drop mesh LODs

•Drop particles/fx/shadows/...

•Drop normal maps

• ...

Making everything blurry, making models have too visible edges, making explosions look bad 
and so on. Basically making sure it runs acceptably fast, at expense of looking worse than the 
artists have intended.

In upcoming Unity’s demo project, we actually drop from a 3D top down shooter to a text 
mode adventure game if we detect really, really crappy hardware ;)



So, in Shadowgun...

•No fancy tech at runtime!

• Basic render, particles, light probes, 
skinning, navmesh, physics, audio, 
scripts

•Scale up with eye candy on GPU

So, in the Shadowgun case, there’s not a lot of technology at runtime. There are basics you 
can expect to be in any 3D game, and then a lot of editor side tools and workflows that 
enable it to cheat and bake. Scaling up is done by adding more eye candy that primarily taxes 
the GPU.



Summary

•Tech is easy

•Game design much harder

• Maybe you don’t need to make same 
game on all platforms?

Technology is relatively easy. A lot of code can be shared, and scaling to something like 10 
times performance difference is possible by just adding some eye candy.

The game design parts are much harder. Gameplay has to be tailored to the platform; so if 
the platforms are very different you might end up doing several slightly different games. 
Which is fine, you can still share a lot of underlying tech of course.



Thanks!

•Slides up soon

• @aras_p

• blogs.unity3d.com

• aras-p.info

So that’s it!

Slides will be soon, watch my twitter stream or Unity/my blogs.

http://blogs.unity3d.com/
http://blogs.unity3d.com/
http://aras-p.info/
http://aras-p.info/

