
Hobby engine to game
engine

Aras Pranckevičius"
Unity Technologies"

@aras_p"
http://aras-p.info

http://aras-p.info

/me

• At Unity since 2006, graphics plumbing"

• Demoscene 2003-2005, own engine"

• Small games and Kinect-wannabe startup
2001-2004, in-house engine"

• Hobby coding before that

Fair question:

• Look at this awesome thing one person did in his/
her spare time!"

• Why can’t real engines with many paid
programmers do it ?!?!

TL;DR answer:

• Because they are solving different problems"

• With different constraints"

"

• Well, that’s it. Questions?

Story 1
What are 100

programmers doing?

Graphics in bigger picture

• For many, “engine” means graphics first for some
reason"

• But: R&D staff at Unity: ~100"

• Working directly on rendering: ~10"

• What do the others do?

Editor & Tools

• Need UI for everything"

• Workflows, UX, consistency, simplicity,
discoverability"

• Massive problems, especially as you gain more &
more features!

Scripting
• Scripting runtimes (Mono/il2cpp/.NET)"

• Garbage Collection tuning, R&D"

• Engine script bindings"

• Debugging (MonoDevelop fork/addins)"

• Script editing (MonoDevelop fork/addins)"

• Script API design / breakage / upgrade

Platforms

• At least 2 people per platform, doing just “boring
work”"

• New Xcode broke foo, new Android NDK broke bar,
Win10 breaks baz, new iPhone needs news splash
screens, Android can do TVs now, WinPhone8.1 is
totally different from WP8.0 now, Apple started rejecting
apps that use API foo, …"

• Consoles have endless lists of certification
requirements to meet.

Core

• Job schedulers, memory allocators, profiling, asset
loading & streaming, logging, base platform stuff"

• Entity/component systems"

• Input"

• Video playback"

• …

Other things!
• AI (navigation, crowds, behavior trees, …)"

• Networking"

• Audio (ties a lot into tools/UI)"

• Animation (runtime, IK, retargeting, state machines,
UI)"

• 2D (runtime part easy; workflows/UI hard)"

• In-game UI

Build engineering & infrastructure &
content

• Build systems"

• Version control"

• Build/test farm"

• IDE configs, etc."

• Documentation (APIs, manuals, references)"

• Example code / projects / packages"

• Translations

QA

• And I didn’t event talk about QA yet!"

• It’s a world unto itself: engineers, internal QA tools,
reporting systems, crash analysis, coverage,
manual testing, sifting through incoming reports, …

All that adds up

• Somehow, that adds up to a lot of people :)

Working in a team

• Need to communicate!"

• Keep others updated on relevant things"

• Avoid duplicated work"

• Potentially clashing features"

• Do work in a consistent way

People are different

• Will be someone who’s way better than you"

• Can be inspiring"

• Or intimidating / depressing"

• Will be someone who’s not as good as you"

• Can be promising"

• Or annoying / demotivating

Different cultures

• Programmers and non-programmers"

• Local culture differences

Story 2
Environment &
infrastructure

Work environment

• Super-distributed, flexible hours, often work from
home"

• Skype, emails, wiki, twitter :)

Version control
• Mercurial. Before: Subversion. Before: CVS."

• Using “largefiles” extension"

• 7.3GB .hg/store; 3GB - 25GB .hg/largefiles; 20-90GB
needed for work"

• 175000 commits"

• Kallithea (fork of Rhodecode) for repo browsing/mgmt"

• Some magic to strip NDA parts for source customers

Build system

• Modified JamPlus"

• “everything about it sucks, but it works”"

• Both actual build & generates IDE projects"

• Some rules are complex, e.g. script binding files
that generate both C# and C++ code, etc.

Build/test farm

• Katana; fork of buildbot + custom frontend"

• Before: TeamCity"
• Before: Hudson (now Jenkins)"

• Before: crappy scripts coordinating two build machines via network
share"
• Before: “Aras, can you build windows standalone and give it to me?”

Story 3
Typical work item

General work process

• Ideas/discussion"

• Code"

• Tests"

• Review"

• All above intermixed

e.g. “Let’s improve shadowmap
filtering!”

• 2 hours of work, right?

Actual process #1

• Write up ideas"

• Explain current shadow filtering to someone new"

• Discuss possible approaches

Approach A

• Directly sample & filter shadow in the shaders"
:) works on alpha blended"

:) MSAA just works"

:(DX9 SM3.0 might run into instruction limits"

:(new filtering requires new set of shaders for everyone"

:(wasted work due to overdraw / quad shading"

:(cascade transitions"

:(bias issues with large filter

Approach B
• Gather into screenspace, then blur"
:) isolated in two shaders"

:) can do fairly wide filter"

:(noisy"

:(depth discontinuity detection errors"

:(cache trashing"

:(MSAA edges"

:(alpha blended

Approach C

• Gather with filtering into screenspace"
:) isolated in one shader"

:(MSAA edges"

:(alpha blended"

:(cascade transitions"

:(bias issues with large filter

Decision time!
• Current approach is B (gather to screen, then filter)"

• Done in 2007, driven by DX9 PS2.0 limits and no-
hardware-PCF"
• Both aren’t a major concern today"

• Let’s try C (gather&filter to screen)"

• Less invasive"

• No shader variant explosion"

• No DX9-level shader length issues

“Actual work” time

• Read “Shadow Mapping Summary” (The Witness)
or “A Sampling of Shadow
Techniques” (mynameismjp)"

• Knowing where to look is fairly useful!"

• Write the shader"

• Profit!

More work
• Let’s keep both during beta for a while, for user

feedback"
• Means have to add settings & UI"

• Add a graphics test, because that’s what we do"
• Turns out it does not work on Xbox 360 & Android

GLES2.0"
• Aha! no hardware PCF there, and we forgot about that case"

• Write variant that does manual depth comparisons"
• Maybe we should have shadow sampling helper functions that deal

with all this stuff

Compare performance

• Instruction count; AMD GPU ShaderAnalyzer; PVR
Shader Editor"

• Check performance on high/mid/low-end GPUs"

• Compare with old filtering approach

Code review

• Forgot to take shadow intensity into account"

• No need to output depth, since no later blur pass"

• DX9 SM2.0 fallback path

Push to production (“trunk”)

• Get whole build/test suite to pass"

• Someone else pushed built-in shaders build in the
meantime; merge and rebuild

In total?

• Was probably 3-4 days"

• Could be less, if were familiar with shadows stuff"

• But the guy who is familiar, was busy/away/…

And it’s not final yet!
• Will get feedback from beta"

• Could mean removing the old shadow filter"
• Which will change a lot of graphics test outputs, will need

update"

• Better dealing with cascade transitions & bias issues"

• Updating documentation"

• Update a bunch of screenshots"

• And translations

Story 4
You’re making stuff for

others

Backwards compatibility

• Bad decisions are forever!"

• Or, almost"

• Very tricky balance"

• “Everything keeps on working forever”"
• Old Microsoft. OpenGL."

• “Move fast and break things”"
• Facebook. Direct3D back in the day.

Sometimes replacing whole system
with another is an option

• Will need to have the old one linger around for a
while"

• Unless have a good way of auto-converting"

• We did this with animation & particles; doing it with
audio and partially lighting now.

Sometimes tools to upgrade are an
option

• Scripting API breakage/obsoletion/renaming"

• Did a tool to change scripts both at source & CIL level"

• Data format conversions"

• Mostly transparent, as long as behavior stays the same

Sometimes continued evolution is
an option

• Add nicer parts, sweep nasty parts under the rug"

• Problems if nasty parts have taken all the nice API
names already

Lots of thinking

• e.g. that “improve shadow map filtering” before"

• Will change look of all games with shadows"

• If 95% users like it but 5% don’t - is that okay?"

• What if 80% vs 20%?"

• 70% vs 30%?

Tools for others

• Their experience level"

• Their use cases"

• Their mental model of things

Tools for others

• Error messages from coders in 95% cases will
confuse non-coders"

• 10 numbers are confusing. Want a traffic light
feedback instead"

• Except when need to dig in. Then need 100 numbers

Built-in vs extensible

• Having nice stuff built-in is nice"

• Being able to change things is nice"

• Being able to invent new usages within existing
engine is nice"

• A range from “Here’s a C compiler, do anything!” to
“Here’s a button to make a game”

Interacting with users

• Tricky balance!"

• I could work on improving Unity"

• Or I could go and help Unity users"

• Gets harder as"

• Number of users grow"

• Variance of users grow"

• Product & company grows

Story 5
Real world out there

Hardware landscape
• Very few people have NVIDIA Titans"

• No one updates their drivers"

• Most popular GPU? Intel GMA HD"

• Hey, a step up from Intel GMA950 / 945 at least"

• Windows XP"

• Which means Direct3D 9"

• Why? China

Hardware range

• PC >10x performance range"

• Mobiles >10x performance range"

• And insist on crazy resolutions

Real content

• Real scenes often aren’t teapots & bunnies"

• More complexity & variety"

• More “harder” cases"

• Non-manifold meshes, intersecting objects, holes, thin
objects, depth precision, alpha blending, light setups,
aliasing

Real content

• Stresses combinations & interplay of features"

• Don’t know the worst case or ranges of parameters

“Creative” ways
• 4096 sprite or eyeball textures, without mipmaps"

• Seven point lights in the same place, with shadows"

• Insists on parsing XML at runtime"

• Water that renders full scene for reflection at full LOD,
with material that barely makes it visible"

• Spends 90% of script time creating strings"

• Turns on deferred rendering, for a 2D game with no lights

Creative ways

• OTOH, many will surprise you with really creative
stuff"

• Navigation in Monument Valley"

• Space-scale physics & rendering in Kerbal Space
Program"

• ShaderForge serializing whole graph in the shader
itself

So is engine coding boring?

• It can at times"

• But also hugely satisfying to see it used in
thousands of ways"

• By a few million people even

Q?

