
G
en

er
at

iv
e 

Ar
t –

 M
ad

e 
w

ith
 U

ni
ty

Random Things
About Code

1

Unity Training Academy 2018-2019, #2
Aras Pranckevičius



Caveat Emptor

● This is going to be totally random!

● Without any structure!

● ...so yeah :)

2



Random Intro

3



A long time ago in a galaxy far, far away...

● I thought these are awesome:

○ C++

○ STL, Boost

○ Object Oriented Programming

○ Design Patterns

● Had hair!

4



Now...

● Most of these are... ”not that good”

○ C++: too complicated

○ STL/Boost: too complicated, over-engineered

○ OOP: only useful for UI widgets

○ Design Patterns: BS to sell books/courses

● No hair :(

5



Some things which I like: Futurist Programming

● “Futurist Programming” by Nick Porcino
● http://nickporcino.com/meshula-net-archive/posts/post168.html 

6

http://nickporcino.com/meshula-net-archive/posts/post168.html


Some things which I like: Futurist Programming

● No Compromise, No Waste Programming
○ The program is the BEST at what it does

○ The program is FAST

○ The footprint is SMALL

○ The code is CLEAR

○ The program is BUG-FREE

○ Abstractions must SIMPLIFY

○ The unnecessary is ELIMINATED

○ NO COMPROMISES in the name of Extensibility, Modularity, Structured Programming, 

Reusable Code, Top Down Design, Standards, Object Oriented Design, or Agility.

7



Some things which I like: Three Big Lies

● “Three Big Lies” by Mike Acton
● https://www.gdcvault.com/play/1012200/Three-Big-Lies-Typical-Design 

● https://cellperformance.beyond3d.com/articles/2008/03/three-big-lies.html

● Fun fact: Mike is at Unity now, working on ECS and stuff!

8

https://www.gdcvault.com/play/1012200/Three-Big-Lies-Typical-Design
https://cellperformance.beyond3d.com/articles/2008/03/three-big-lies.html


Some things which I like: Three Big Lies

● Software is a platform

● Code designed around the model of the world

● Code is more important than data

9



Code is just means to solve a problem

● “Solve a problem” is key
○ What exact problem is your code solving?

○ Is that an actual problem someone has?

● Don’t get too attached to your code (or anything…)
○ Some lovely code will get thrown away

○ Some nasty code will live forever

10



“Future Proof”

11



12



Plan ahead just enough

● Enough to not put yourself into a corner

● Simplest thing that solves today’s problem

● It can and will change in the future
○ Often in ways you could not have predicted

13



Exception: Public APIs

● Public APIs of a platform (like Unity) live 10+ years
○ https://twitter.com/mcclure111/status/954137509843398656

14

https://twitter.com/mcclure111/status/954137509843398656


Future Proof is wishful thinking

● I don’t think I ever saw “future proof” plan work out
○ Often you don’t know future requirements

○ “I’ll make a renderer interface and implementation for DX11, and 

later on will learn Vulkan and just make an impl for that”

○ If you don’t know Vulkan yet, you have no idea about proper 

interface

15



Future Proofing result is often this

● https://abstrusegoose.com/432

16

https://abstrusegoose.com/432


When should I build an abstraction?

● “When you have three things” is good rule
○ Have done 3 things separately,

○ Suspect they might have something in common,

○ Factor out common functionality/interface/… 

● Duplicating code is sometimes ok!
○ http://bitsquid.blogspot.com/2011/01/managing-coupling.html

17

http://bitsquid.blogspot.com/2011/01/managing-coupling.html


Navigating large codebases

18



Large codebases often are...

● Fairly old (Unity: some parts 14yo)

● Little or no documentation

● Grew organically

● Some places no one remembers what/why/how

19



Reaction can often be “aaarg what is this?!”

● Most of it is there for a reason

● Tempting to say “this sucks, burn it, start over”
○ Often not a good idea

○ It must be solving some problems quite well,

○ ...or otherwise you would not be working on it!

● Maybe you would have done it differently
○ Original authors would have done it differently too!

20



Assume authors are not stupid

● If something looks strange/weird/wrong:
○ 30% there is a good (non obvious) reason for it

○ 30% there was a good reason for it

○ 30% there is no good reason, and code is indeed stupid

○ 10% Ph'nglui mglw'nafh C ̵t ̴h ̷u ̴l ̸h ̶u ̸ R ̴'l ̵y ̷e ̷h ̵ w ̷̡͓g ̷a ̸͇̹h ̷̰͖n ̵a ̷̯̬g ̷l ̴̥̗ f ̶̮̱́̈h ̵̟̳́͝t ̸̔̈́a ̴̥̞̈̏g ̸̛̯̬́n ̶͉͇͊̔

21



Don’t go cowboy refactor/cleanup

● My messup on PSI: Syberian Conflict (2005)
○ Contracted on physics/explosions system

○ Saw a bunch of “ugh” code

○ Refactored/cleaned up the heck out of it

○ Did not realize I was only working in “test” solution without rest of game

○ Broke builds for everyone else
■ (this was 2005, we had no branches or CI)

22



Figuring out a small thing

● Pick a small thing (feature etc.) to figure out

● Search whole codebase for API/message/…
○ Search in whole solution in IDE

○ ripgrep https://github.com/BurntSushi/ripgrep is insanely fast

● Breakpoint in debugger
○ Step through/into from there

○ Take notes and build a mental picture of things

23

https://github.com/BurntSushi/ripgrep


Figuring out a small thing

● If you get stuck, do ask!
○ First spend 10 minutes figuring it out yourself of course

○ Don’t get stuck for longer than a day

○ Many people happy to answer questions & explain things

○ Protip: Ctrl+K in Slack, type topic, find channels that sound related

24



Figuring out a large thing

● Pick a larger system to build high level view of
○ Can you figure it out from file/class/functions/interface layout?

○ Does it map well to common approaches?
■ Game Engine Architecture book

■ Real-Rime Rendering book

■ Real-Time Collision Detection book

○ Are there any docs, talks, presentations about it?

○ Ask someone to walk you through it (~1 hour)
■ Again, many people are happy to!

25

https://www.gameenginebook.com/
http://www.realtimerendering.com/
http://realtimecollisiondetection.net/books/rtcd/


Useful workflows: Debugging

● Debugging is finding where/why a problem is
○ “What could possibly have caused this?”

○ “What is different in this case vs the one that works?”

○ Binary search / Divide & conquer

○ Hypothesis, test, repeat

○ Source control (next) can be useful

26



Useful workflows: Source Control

● Use Source Control effectively
○ Don’t mash up unrelated changes

○ Write detailed commit messages, explaining why
■ “Fixed some stuff” will bite you in the arse 4 years later

○ Learn VCS annotate/blame/log functions
■ Who changed this, when and why? Can you ask them?

27



Useful workflows: Tests

● Having automated tests will save you 1000 times
○ 3 months/years in the future when changes have to be made

○ It might not even be you making changes

○ ...or it might be you, having forgotten everything about the code

28



Useful workflows: One Thing At A Time

● Small enough “I’m making progress” tasks
○ 1-2 hours each; put them into Trello/Favro/Stickies/Dropbox

○ Helps with accomplishment & focus

● When stuff does not work:
○ What exactly have you changed from when it was working?

■ Version control with small, isolated changes!

○ Look at that instead of randomly plowing forward

29



Useful workflows: Know Your Tools

● Learn a good IDE/debugger
○ Including plugins that might help you (Resharper, VisualAssist)

○ Keyboard shortcuts

● Learn other tools
○ Source control, profilers, grepping, regex, …

30



Navigating a large organization

31



Navigating an organization

● Companies are structured very differently

● Culture within a company can be different too
○ Or in different locations / departments of the same company!

● Unity (in R&D) is fairly flexible, relaxed, not overly 

hierarchical, and can feel chaotic at times
○ The chaos allows awesome things to happen, but can be 

intimidating or confusing

32



Navigating an organization

● Know your team (well duh)

● But also wander off into other areas
○ e.g. join other Slack channels of interest

○ Answer questions you know the answer to

○ Participate in discussions

33



Navigating an organization

● Interact with people
○ Hackweeks, Unites, team offsites, townhalls, … 

○ Yes, it can be hard for many of us

○ Often worth the effort though

34



Navigating an organization

● Make you/team/work be visible
○ Did something cool? Tell others about it

■ Some teams work on years on great stuff, and never send an update “hey look, we did this!” to 

anyone

○ This does sound like marketing, because it is

○ “Others know about you” is much better than

“No one has any idea you even exist”

35



Ask me 5 or more questions!

36


