
Aras Pranckevičius, 2023 April

Random talk about code!



Who the f are you?

• A programmer. Since 1996, professionally since 2001. 

• 16 years at Unity. Graphics engine and a lot of other stuff. 

• Old and jaded, and I have Opinions™ that may or might not be 
correct! 

• Website aras-p.info and Mastodon mastodon.gamedev.place/
@aras 

https://aras-p.info/
https://mastodon.gamedev.place/@aras
https://mastodon.gamedev.place/@aras


100% of seniors
Are just old



Or they have a handful of tricks



Effective Debugging

• Debug.Log(), Console.WriteLine() or printf() are not effective debugging! 
• …except when they are :) 

• Use a good debugging IDE: Rider, Visual Studio etc. Specialized tools like Frame 
Debugger or Renderdoc. 

• Hypothesis, validation of it. 

• Divide and conquer. 

• Do not check multiple hypotheses at once. 

• Keep notes on everything. 

• “Surely this can not happen” — check it. Maybe it can?



Effective Profiling

• “I think this is slow because X”. Do not think, measure! 
• Results are often surprising even for experienced folks. 

• Use good profiling tools! 

• Unity has some built-in (Profiler, Memory Analyser). 

• Some IDEs have decent ones (Rider, Visual Studio). 

• Native code profiler can be very useful even without having engine 
source code! 

• Superluminal is most excellent (check their Unity profiling).

https://superluminal.eu/


Aside: Performance

• Computers and ridiculously fast these days. 

• We regularly piss away 100x-1000x of their possible performance. 

• Unity DOTS (and DOD/ECS in general) are an attempt at that. 
• Other approaches are possible too! 

• “Practical Optimizations” talk by Jason Booth: www.youtube.com/
watch?v=NAVbI1HIzCE 

https://www.youtube.com/watch?v=NAVbI1HIzCE
https://www.youtube.com/watch?v=NAVbI1HIzCE


Use Tools in General!

• A good IDE. 

• Nifty command line tools. ripgrep, fd etc. 

• ChatGPT, but assume 50% of what it says is bullshit.

https://github.com/BurntSushi/ripgrep
https://github.com/sharkdp/fd


Intuition aka Experience

• Over time you build up “intuition”. 

• “Magic” insights señors have are just because they have seen a 
similar situation 10 times. 

• Not sure if there are shortcuts? It might take 10+ years.



Important vs not

• A lot of programmer flamewars are a waste of time. 
• Tabs/Spaces, Vim/Emacs, OOP/DoD, NULL/nullptr, */&, coding style, 

D3D/Vulkan, … 

• Too much worry about “future extensibility”. 

• Too much worry about “clean code”. 
• Users (players) don’t care about your code.



Larger Picture

• Keep a larger picture in mind. 

• This change/feature/fix/system/program - what is the actual goal 
of it? 

• How does it interact with things around it? 

• What are the failure cases? 

• What else could be affected by this? 

• “Leave place in better shape than you found it”



Effective Source Control / Comments

• Explain why, not what. 

• In a year you will have forgotten “why”. 

• Write down why something “obvious” is not done. 

• Learn your VCS! Branches, blame/annotate, bisect, etc.



Root Causes

• Get down to the root cause of things (bugs, behaviour, …) 
• Within reason :) 

• “Dividing by 2 makes the issue go away” — ok, but why?



Curiosity

• “Hmm this feels slow” or “Huh this looks strange”. 

• Investigate! 

• And then do something about it. 
• Or get someone else to do something about it.



Managing Time

• Get out of “I’m stuck” without wasting too much time. 

• Context switching. 

• Interleave high-focus and easy/trivial tasks. 

• Take a break!



Ask me 5 or more questions!


