
Aras Pranckevičius, 2023 April

Random talk about code!



Who the f are you?

• A programmer. Since 1996, professionally since 2001.


• 16 years at Unity. Graphics engine and a lot of other stuff.


• Old and jaded, and I have Opinions™ that may or might not be 
correct!


• Website aras-p.info and Mastodon mastodon.gamedev.place/
@aras 

https://aras-p.info/
https://mastodon.gamedev.place/@aras
https://mastodon.gamedev.place/@aras


100% of seniors
Are just old



Or they have a handful of tricks



Effective Debugging

• Debug.Log(), Console.WriteLine() or printf() are not effective debugging!

• …except when they are :)


• Use a good debugging IDE: Rider, Visual Studio etc. Specialized tools like Frame 
Debugger or Renderdoc.


• Hypothesis, validation of it.


• Divide and conquer.


• Do not check multiple hypotheses at once.


• Keep notes on everything.


• “Surely this can not happen” — check it. Maybe it can?



Effective Profiling

• “I think this is slow because X”. Do not think, measure!

• Results are often surprising even for experienced folks.


• Use good profiling tools!


• Unity has some built-in (Profiler, Memory Analyser).


• Some IDEs have decent ones (Rider, Visual Studio).


• Native code profiler can be very useful even without having engine 
source code!


• Superluminal is most excellent (check their Unity profiling).

https://superluminal.eu/


Aside: Performance

• Computers and ridiculously fast these days.


• We regularly piss away 100x-1000x of their possible performance.


• Unity DOTS (and DOD/ECS in general) are an attempt at that.

• Other approaches are possible too!


• “Practical Optimizations” talk by Jason Booth: www.youtube.com/
watch?v=NAVbI1HIzCE 

https://www.youtube.com/watch?v=NAVbI1HIzCE
https://www.youtube.com/watch?v=NAVbI1HIzCE


Use Tools in General!

• A good IDE.


• Nifty command line tools. ripgrep, fd etc.


• ChatGPT, but assume 50% of what it says is bullshit.

https://github.com/BurntSushi/ripgrep
https://github.com/sharkdp/fd


Intuition aka Experience

• Over time you build up “intuition”.


• “Magic” insights señors have are just because they have seen a 
similar situation 10 times.


• Not sure if there are shortcuts? It might take 10+ years.



Important vs not

• A lot of programmer flamewars are a waste of time.

• Tabs/Spaces, Vim/Emacs, OOP/DoD, NULL/nullptr, */&, coding style, 

D3D/Vulkan, …


• Too much worry about “future extensibility”.


• Too much worry about “clean code”.

• Users (players) don’t care about your code.



Larger Picture

• Keep a larger picture in mind.


• This change/feature/fix/system/program - what is the actual goal 
of it?


• How does it interact with things around it?


• What are the failure cases?


• What else could be affected by this?


• “Leave place in better shape than you found it”



Effective Source Control / Comments

• Explain why, not what.


• In a year you will have forgotten “why”.


• Write down why something “obvious” is not done.


• Learn your VCS! Branches, blame/annotate, bisect, etc.



Root Causes

• Get down to the root cause of things (bugs, behaviour, …)

• Within reason :)


• “Dividing by 2 makes the issue go away” — ok, but why?



Curiosity

• “Hmm this feels slow” or “Huh this looks strange”.


• Investigate!


• And then do something about it.

• Or get someone else to do something about it.



Managing Time

• Get out of “I’m stuck” without wasting too much time.


• Context switching.


• Interleave high-focus and easy/trivial tasks.


• Take a break!



Ask me 5 or more questions!


